
1

UNIVERSIDAD DON BOSCO

FACULTAD DE INGENIERIA

ESCUELA DE COMPUTACIÓN

Ciclo II

Programación de Algoritmos

Guía de Laboratorio No. 4

Introduccion a C++

I. RESULTADOS DE APRENDIZAJE

Que el estudiante:

 Se familiarice con el entorno de desarrollo del compilador de Lenguaje C++

 Identifique la estructura general de un programa en C y los tipos de datos de las variables.

 Declare variables y constantes dentro de un código fuente de C.

 Escriba nuevos programas (software) con C++ para solucionar problemas.

II. INTRODUCCIÓN

Historia del Lenguaje C

El lenguaje C fue desarrollado por Dennis Ritchie en 1972. Este lenguaje se considera un lenguaje

débilmente tipificado de nivel medio, pero con muchas características de bajo nivel.

Dispone de las estructuras típicas de los lenguajes de alto nivel porque puede ocultar los detalles de la

arquitectura de la computadora y por tanto incrementar la eficiencia en la programación.

Pero, a su vez, dispone de construcciones del lenguaje que permite un control a muy bajo nivel, tanto así,

que algunos compiladores ofrecen extensiones del lenguaje que permiten mezclar código en lenguaje

ensamblador con código en C.

Lenguaje C++

El lenguaje C++ se desarrolló como un súper conjunto del lenguaje C y fue desarrollado por el Dr. Bjarne

Stroustrup entre 1983 y 1987.

C++ mantiene todas las características del lenguaje C, pero además proporciona la capacidad de

desarrollar programas orientados a objetos (POO), almacenando variables y funciones en módulos

llamados clases.

¿Cómo crear un programa utilizando C++?

Para digitar los códigos de estos programas se requiere un editor de C/C++ (o un simple editor de texto),

y para ejecutar un programa escrito en lenguaje C/C++ se necesita de un Compilador. En la actualidad,

2

existe una gran cantidad de compiladores y editores para ejecutar programas en C/C++, ejemplos de ellos

son: Borland C, Turbo C, Dev C++, GCC, Visual C++, etc.

Un programa en C++, casi siempre, pasa a través de 6 fases para su ejecución, las cuales son: editar, pre

procesar, compilar, enlazar, cargar y ejecutar. Estas fases se describen a continuación:

a) La edición es el proceso en el que el programador digita el código de programa en un editor para

C++. A este código se le conoce como código fuente.

b) El pre procesamiento consiste en modificar el código fuente de C según una serie de instrucciones

conocidas como directivas de pre procesamiento con el propósito de simplificar el trabajo del

compilador.

c) La compilación es el proceso de pasar el código fuente ya pre procesado a código objeto.

d) La fase de enlace consiste en unir los códigos objeto de los distintos módulos y bibliotecas

externas (bibliotecas de sistema) con el fin de generar el programa ejecutable final.

e) Finalmente, una vez generado el código ejecutable se carga y se ejecuta.

Estructura de un programa en C++

Para elaborar un programa básico en lenguaje C++, se necesita definir 2 partes fundamentales (Ver Tabla

4.1):

a) Encabezado de programa:

En esta parte se definen los archivos extensión .h, los cuales contienen las librerías de funciones que C

necesita para ejecutar diferentes tareas/cálculos dentro del programa a crear.

b) Cuerpo del programa:

Se define con la palabra main () y una pareja de llaves { }.

Entre estas llaves se definen las variables y las instrucciones utilizadas para entradas de datos, cálculos

y salidas de resultados.

Encabezado del programa
(archivos de cabecera)

#include <iostream.h>

using namespace std:

Cuerpo del programa

(función main)

main()

{

 cout<<”Hola Mundo”;

 return(0);

}

Tabla 4.1: Partes básicas que componen la estructura de un programa fuente de C++

De un modo más explícito, un programa C puede incluir:

 Directivas de preprocesador;

 Declaraciones globales

3

 La función main ()

 Funciones definidas por el usuario

 Comentarios del programa (utilizados en su totalidad).

Palabras reservadas

Existen una serie de indicadores reservados, con una finalidad específica dentro del compilador de C++,

y que no pueden utilizarse como identificadores. En la tabla 4.2 se listan algunas de las palabras

reservadas mas utilizadas.

_ a s m a u t o e l s e p r i v a t e t r y

_ b a s e d b o o l e n u m p r o t e c t e d t y p e d e f

_ c d e c l b r e a k e x p l i c i t p u b l i c t y p e i d

_ d e c 1 s p e c c a s e e x t e r n r e g i s t e r t y p e n a m e

_ e x c e p t c a t c h f a l s e T h r o w u n i o n

_ f a s t c a l l c h a r f l o a t r e t u r n u n s i g n e d

_ f i n a l l y c l a s s f o r S h o r t u s i n g

_ i n h e r i t a n c e c o n s t f r i e n d S i g n e d u s i n g

_ i n l i n e c o n s t - c a s t g o t o i n h e r i t a n c e u u i d

_ i n t 3 2 c o n t i n u e i f s i z e o f v i r t u a l

_ i n t 6 4 d e c l a r a t i o n i n l i n e s t a t i c v o i d

_ i n t 8 d e f a u l t i n t s t a t i c - c a s t v o l a t i l e

_ i n t l 6 d e l e t e l o n g s t r u c t w c h a r _ t

_ l e a v e d i r e c t i v e m a n s w i t c h w h i l e

_ m u l t i p l e d l 1 e x p o r t m u t a b l e t e m p l a t e w m a i n

_ s t d c a l l d l l i m p o r t n a k e d t h i s x a l l o c

_ t r y d o n a m e s p a c e t h r e a d

_ u u i d o f d o u b l e n e w

Tabla 4.2: Algunas de las palabras reservadas de C++

Bibliotecas / Librerías

C/C++ ofrece un conjunto de funciones estándar que dan soporte a las operaciones que se utilizan con

más frecuencia. Estas funciones están agrupadas en Bibliotecas, también conocidas como Librerias.

Para utilizar cualquiera de las funciones que forman parte de las bibliotecas estándar de C, sólo hace falta

realizar una llamada a dicha función.

Las funciones que forman parte de la biblioteca estándar de C, funciones estándar o predefinidas, están

divididas en grupos.

Los grupos de funciones estándar más comunes son: entrada/salida estándar, matemáticas, de conversión,

diagnóstico, de manipulación de memoria, control de proceso, ordenación, directorios, fecha y hora,

cadenas, gráficas, etc.

Todas las funciones que pertenecen a un grupo o libreria, se redactan en un fichero de cabecera.

4

Directivas de procesador

Todas las directivas del preprocesador comienzan con el signo de almohadilla (#), que indica al

compilador que lea las directivas antes de compilar la parte (función) principal del programa.

Las dos directivas más usuales son #include y #define. Observe ejemplos de su uso en la Tabla 4.3

i n c l u d e

Incluye el contenido del archivo nombrado. Estos son usualmente llamados archivos

de cabecera (header). Por ejemplo:

i n c l u d e < m a t h . h > -- Archivo de la biblioteca estándar de matemáticas.

i n c l u d e < i o s t r e a m > -- Archivo de la biblioteca de Entrada/Salida de C++

d e f i n e
Define un nombre simbólico o constante. Sustitución de macros.

d e f i n e T A M _ M A X _ A R R E G L O 1 0 0

Tabla 4.3: Algunas de las palabras reservadas de C++

Archivos de cabecera / librerias

Existen archivos de cabecera estándar que se utilizan ampliamente, tales como stdio.h, math.h, string.h,

iostream.h y se utilizarán otros archivos de cabecera definidos por el usuario para diseño estructurado.

Los archivos de cabecera (archivos con extensión .h contienen código fuente C) se sitúan en un programa

C mediante la directiva del preprocesador #include con una instrucción que tiene el siguiente formato:

#include<nombrearch. h> o también #include "nombrearch.h"

Control de entrada y salida de información (iostream.h)

La entrada y salida (E/S) de información se gestiona en C++ mediante la funcionalidad proporcionada

por la biblioteca iostream.h. La palabra stream significa “flujo” o “corriente” en inglés, para dar una

indicación de cómo funcionan los aspectos de E/S:

 Los dispositivos de salida (ej.: monitor) se modelan como canales/tuberías a los que va llegando

un flujo de información.

 Del mismo modo, los dispositivos de entrada (el teclado) son fuentes de las que surge un flujo de

información.

Tanto en un caso como en otro, la librería iostream brinda los operadores para insertar información en el

flujo de salida, o extraer información del flujo de entrada.

Sobre dichos flujos se aplican las operaciones de extracción (operador >>) y de inserción (operador <<).

Función cout

El flujo de salida (asociado a la pantalla) se administra con el operador cout. La sintaxis general para el

uso de cout es:

<Flujo de salida>cout<< (<expresión> | endl) {<< (<expresión> | endl)};

El operador cout imprime una cadena de caracteres sobre la pantalla del ordenador, formada por

expresiones (variables o cadenas de caracteres) y saldos de línea (generado con operador endl).

5

Operador cin

La biblioteca iostream dispone automáticamente del flujo asociado a la entrada a través de teclado con

el operador cin. Su sintaxis de uso es:

<Flujo de entrada>cin>><ident {>><identX>};

Con cin se leen datos de la entrada estándar y se almacenan en variables que recibe como argumentos

(ident). Por Ej.: cin>>variable1>>variable2>>variable3;

C++ proporciona otros mecanismos de entrada/salida menos sofisticados que permiten leer o escribir

simplemente un carácter por la entrada/salida estándar. Esto se realiza mediante las funciones

cin.get(variable_char) y cout.put(variable_char).

Tipos de Datos

C no soporta un gran número de tipos de datos predefinidos, pero tiene la capacidad para crear sus propios

tipos de datos. En la Tabla 4.4, se presentan los principales tipos de datos básicos, sus tamaños en bytes

y el rango de valores que puede almacenar.

Nombre del tipo de dato
Bytes de

Memoria
Rango de valores

int * Depende del sistema

unsigned int * Depende del sistema

_int8 1 -128 hasta 127

_int16 2 -32,768 hasta 32,767

_int32 4 -2,147,483,648 hasta 2,147,483,647

_int64 8 -9,223,372,036,854,775,808 hasta

9,223,372,036,854,775,807

char 1 -128 hasta 127

unsigned char 1 0 hasta 255

short 2 -32,768 hasta 32,767

long 4 -2,147,483,648 hasta 2,147,483,647

float 4 +/-3.4E+/-38(7 dígitos)

double 8 +/-1.7E+/-308(15 dígitos)

Tabla 4.4: Tipos de datos de C++ y los rangos de valores que soportan.

Los tipos de datos básicos/fundamentales en C++ son:

 Enteros: (números completos y sus negativos), de tipo int.

 Variantes de enteros: tipos short, long y unsigned.

 Reales: números decimales, tipos float, double o long double.

 Caracteres: letras, dígitos, símbolos y signos de puntuación, tipo char.

6

Las palabras c h a r , i n t , f l o a t y d o u b l e son reservadas y especifican Tipos de datos. Cada tipo

de dato tiene su propia lista de atributos que definen las características del tipo y pueden variar de una

máquina a otra.

Los tipos char, int y double tienen variaciones o modificadores de tipos de datos, tales como s h o r t ,

l o n g , s i g n e d y u n s i g n e d , para permitir un uso más eficiente de los tipos de datos.

Variables y Constantes

Variables

Son las posiciones de memoria en donde se almacenan cada uno de los datos a utilizar por el programa

y estas pueden ser de un tipo de dato particular.

Constantes

Si un dato no va a cambiar su valor durante la ejecución del programa, generalmente se declara como un

valor constante (con la sentencia const).

¿Cómo crear Identificadores de variables y constantes?

Hemos visto que una variable es un lugar en la memoria de una PC, en donde se almacena un dato en

nuestro programa, y esta puede ser de un tipo de dato particular.

Cada variable tiene un nombre (identificador), el cual debe cumplir estas restricciones:

1. Se forma por una secuencia de letras y dígitos, aunque también acepta el carácter de subrayado.

2. No acepta los acentos, el espacio en blanco, ni la ñ / Ñ.

3. El primer carácter no puede ser un número (digito), sino que debe ser una letra o el símbolo _ .

4. C++ hace distinción entre mayúsculas y minúsculas, es Case Sensitive.

Para declarar una variable debe hacer uso de uno de los tipos de datos mencionados en la tabla 4.4 (i n t ,

c h a r , f l o a t , etc.) en el área del cuerpo del programa siguiendo esta sintaxis:

N o m b r e T i p o D a t o ListadeVariables;

En donde ListadeVariables es el nombre de una o muchas variables, cada una de las cuales se les define

un Tipo de dato en común (NombreTipoDato). Si se declaran 2 o más variables, estas se separan por

comas (,).

También puede indicar un “valor inicial” que tendrá una variable al declararla, agregando el operador de

asignación (=) y luego el valor. Cualquier variable sin un valor inicial, tendrá un valor aleatorio asignado

por la PC cuando se ejecute el programa final. Para terminar una línea de declaración de variables se

utiliza un (;)

Ejemplos de declaraciones de variables:

int A, B, C; //declaras 3 variables enteras sin valor inicial
//Crea una variable entera llamada numX y tendrá un valor inicial de -8
int numX=-8;
/*Se crean 4 variables decimales.
Sólo a las variables H y num3 se les define un valor inicial*/
float H=4.6, num2, R, num3=0.08;

Una vez declarada una variable, la puede utilizar en su programa, teniendo en cuenta las restricciones del

rango y que se pueden hacer con ella, gracias a su tipo de dato definido.

7

Declarar el identificador de una constante

Si un dato no va a cambiar su valor durante la ejecución completa del programa, generalmente se declara

como un valor constante. Lenguaje C++ permite 2 maneras de definir una constante:

Método 1: sentencia #define

Los pasos para definir una constante bajo el lenguaje C original, son los siguientes:

1 Ubica el cursor en una línea vacia, justo donde declara las librerías (con #include), dentro del

encabezado (inicio) del programa.

2 Escribe la directiva #define, el identificador de la constante

y su valor fijo (valor constante), con esta sintaxis:

d e f i n e < i d e n t i f i c a d o r > < v a l o r >

Ejemplo:

d e f i n e P I 3 . 1 4 1 5 9 2

3 Si necesita más constantes, escribe las otras constantes en las

líneas siguientes, cuidando de escribir solo una definición

por línea, por ejemplo:

Ejemplo:

d e f i n e P I 3 . 1 4 1 5 9 2

d e f i n e D o l a r 8 . 7 5

Método2: sentencia const

En lenguaje C++, los identificadores se declaran constantes por medio de la palabra reservada c o n s t .

Observe los siguientes ejemplos:

c o n s t d o u b l e P I = 3 . 1 4 1 6 ;

c o n s t c h a r B L A N C O = ' ' ;

c o n s t d o u b l e P I _ E G = P I ;

c o n s t d o u b l e D O B L E _ P I = 2 * P I ;

Tipos de Operadores

Un operador es un símbolo que expresa que ha de realizarse una operación específica a un valor o a una

pareja de valores, retornando un resultado único.

Al igual que los operadores utilizados al elaborar el pseudocódigo y/o diagrama de flujo, lenguaje C tiene

una serie de categorías de operadores, los cuales se explican a continuación:

 Operadores de asignación

 Operador de agrupación

 Operadores aritméticos

 Operadores lógicos

 Operadores relacionales

Formato de los datos impresos en pantalla

Se puede alterar el formato de impresión de los datos en pantalla generados por cout mediante el uso de

la funcionalidad que proporciona la biblioteca iomanip. Mediante la misma es posible por ej.: indicar el

número de decimales de precisión con el que se quiere escribir un número en punto flotante, el número

de espacios que vamos a emplear para escribir un dato, caracteres de relleno, etc.

8

Esto se realiza mediante la inserción en el flujo de salida de modificadores, que afectarán a los datos que

se introduzcan a continuación.

Alguno de estos modificadores son los siguientes:

 setprecision(): indica el número de dígitos significativos en un dato en punto flotante. Afecta a

todos los datos que se introduzcan con posterioridad.

 setw(): define el número de espacios que se emplearán para escribir un dato, alineando al mismo

a la derecha dentro de dicho espacio. Si el espacio requerido es mayor que el indicado, el

modificador se ignora. Sólo afecta al dato que se indica a continuación.

 setfill(): especifica el carácter de relleno que se empleará para los espacios no usados al escribir

un dato, según un modificador setw().

Redaccion de Comentarios

Usted puede decirle al compilador de C que ignore a propósito, determinados segmentos de líneas de su

programa, para que así, utilice estos bloques para redactar ayudas, explicaciones o comentarios sobre

determinados bloques del código fuente de su programa.

Hay 2 formas de crear comentarios sobre segmentos de su código fuente de C, las cuales son:

a) Con dos plecas (//) se ignora lo escrito hacia la derecha de la línea actual, comenzando por el

inicio //.

b) Con 2 parejas de símbolos / y un * utilizados de esta forma: / * c o m e n t a r i o * / .

Se ignora todo el código (de una o muchas líneas) escrito entre el / * (de apertura) y el * / (de

cierre del comentario).

III. MATERIALES Y EQUIPO

No. Requerimientos Cantidad

1 Memoria USB 1

2 Compilador y editor de C++ 1

IV. PROCEDIMIENTO

Parte 1: Creando los códigos fuente (archivos .CPP) de los programas

1. Para cargar el compilador Dev-C++ siga la siguiente secuencia de pasos:

a. Haga clic en botón Inicio de Windows, luego opción Todos los Programas

b. Seleccione programa Bloodshed Dev C++.

c. Dev C++ se ejecutan abriendo el entorno de desarrollo. Luego aparecerá la ventana del compilador

vacía

9

2. A continuación se describe la ventana principal del programa C++ que será nuestro entorno de

trabajo para el resto del curso:

3. Para crear un nuevo programa (código fuente), haga clic en Archivo y luego en opción Nuevo, y por

último, haga clic en Archivo fuente.

4. Cree una carpeta llamada PALguia04deCarnet (reemplace Carnet por su correspondiente número

de carnet). Aquí guardará todos sus programas a crear durante la práctica.

5. Ahora proceda a crear cada uno de los siguientes programas:

1. Nombre de programa:Ejercicio1

Código fuente C de un programa para mostrar el clásico mensaje “Hola Mundo”, utilizando el flujo de

salida administrado por el operador cout de la biblioteca de E/S (iostream.h) de C++

#include<iostream>

using namespace std;

#include<stdlib.h>

/*Este es un programa en C para mostrar en pantalla

al mensaje Hola Mundo */

main(){

 cout<<"hola Mundo\n";

 system("pause");

}//fin main

10

6. Guarde su primer archivo de código fuente con el nombre Ejercicio1.cpp en su carpeta de trabajo

ya sea por medio de opción Archivo y luego Guardar o también, busque el respectivo icono en la

barra de herramientas

Parte 2: Compilar un código fuente (.CPP) y ejecutarlo

7. Hasta aquí ya tiene su código fuente (archivo .CPP) almacenado. Ahora deberá compilar el archivo

.CPP para que el Lenguaje C cree el programa (Ejercicio1.exe) a ejecutar.

8. Pero debe tomar en cuenta que si el cod. presenta errores de sintaxis, este no será compilado ni se

podrá ejecutar, por lo que se le recomienda:

a) Revisar bien la sintaxis, cada elemento es fundamental que se encuentre en la secuencia correcta.

b) Ser cuidadoso con el uso apropiado de mayúsculas y minúsculas, debido a que C++ es

CaseSensitive.

c) No puede usar palabras reservadas de C como nombres de variables.

9. Para generar la aplicación .exe de su código fuente, ejecute una de las siguientes 3 alternativas:

 dé clic en icono

 desde el menú principal, seleccione Ejecutar y busque la opción compilar, o también

 presione la tecla (F9)

10. El programa será compilado (traducción a lenguaje de máquina). Luego debe ejecutar el programa,

para ello haga clic en el icono .

11. El mensaje al final es dado por la función system (). Solo debe presionar una tecla y el programa

terminara su ejecución.

12. Modifique el texto del argumento usado por system () con este texto: "pause>nil"

13. Vuelva a compilar el código fuente y ejecútelo. La función system () siempre espera que presione

una tecla para terminar, pero ya no muestra el mensaje explícito como antes.

Parte 3: Declaración de variables y asignación de sus valores

14. Cree un nuevo código fuente vacío. Para ello, nuevamente haga clic en Archivo, luego Nuevo, y por

último, clic en Archivo fuente.

15. En este código fuente, hará uso de las 2 maneras para declarar variables en C++, determinar el valor

que C++ le asigna al inicio y como poder alterarlo.

16. En la ventana vacía del nuevo código fuente, digite el siguiente código:

Programa: Ejercicio2.cpp

11

Se demuestra cómo declarar variables y determinar el total de bytes de la RAM que reserva C para

c/variable.

Finalmente, cómo asignar un valor o dejar su valor predeterminado y la manera como asignar

nuevos valores a las mismas.

1

2

9

19

#include<iostream>

using namespace std;

#include<stdlib.h>

int main(){

 //declaracion de variables

 char A;//tipo caracter

 float B;//tipo decimal flotante

 double C;//decimal doble flotante

cout<<"Cuanto espacio me memoria (bytes) ocupa variable A ? "<<sizeof(A);

 cout<<"\nCuantos bytes se reserva para variable B ? "<<sizeof(B);

 cout<<"\nCuantos bytes de memoria para variable C ? "<<sizeof(C);

 cout<<"\n\nValor actual de variables es el siguiente:";

 cout<<"\nvariable A = "<<A;

 cout<<"\nvariable B = "<<B;

 cout<<"\nvariable C = "<<C;

 //despues, asigna valores solo a variable B y C

cout<<"\n\nDime un nuevo valor decimal para variable B :";

 cin>>B;//solicita valor a usuario

 C=6.02214e23;//programador asigna valor a C

 cout<<"\n\nLuego del cambio, las variables guardan estos valores:";

 cout<<"\nvariable A = "<<A;

 cout<<"\nvariable B = "<<B;

 cout<<"\nvariable c = "<<C;

 system("pause>nil");//genera una pausa en la ejecucion

}

17. Guarde los cambios anteriores con el nombre de archivo Ejercicio2 y compile este nuevo código.

Si hay problemas de compilación, compare línea por línea, carácter por carácter del cod. anterior y

el digitado en el editor, para corregir los errores en la sintaxis esperada por C++.

18. Ahora, del código fuente anterior, analice los siguientes detalles

12

 Compare la declaración de cada variable definida en el código fuente y el correspondiente valor

que almacena posteriormente.

 Observe que la variable b, almacena un valor dado directamente por usuario del programa.

 Línea 10: utiliza la función sizeof(), para saber la cantidad de bytes que reserva C++ para

definir a una variable en la aplicación. La cantidad de bytes depende del tipo de dato de la

variable.

 Línea 19: El valor resaltado se conoce como el “número de avogadro”. Es un valor muy grande,

por lo que se asigna en notación científica.

Consulte su valor real en internet y compare su escritura normal con la sintaxis usada en el código

fuente.

Parte 4: Modificadores de formato de impresión de operador cout

19. Prepare un nuevo archivo de código fuente en blanco. Aquí digite el siguiente código:

Programa: Ejercicio3.cpp

Solicitar 3 números decimales, para mostrar el proceso de suma de los mismos, todos impresos

con solamente 2 cifras decimales.

1

2

3

10

11

13

14

16

18

#include <iostream>

using namespace std;

#include <stdlib.h>

main(){

float a, b, c, res;

cout<<"digita 3 numeros reales para asi sumarlos:\n";

cin>> a >> b >> c;

res = a + b + c;

//Se formatea la salida con 2 cifras decimales

//cout.setf(ios::fixed);

//cout.precision(2);

cout<<"\nSuma resultante es: \n";

//cout.setf(ios::right);

//cout.width(10);

cout<< a <<endl;

//cout.width(10);

cout<< b <<endl;

//cout.width(10);

cout<< c <<"+"<<endl;

13

20

22

//cout.width(11); cout.fill('-');

cout<<".";

//cout.width(10); cout.fill(' ');

cout<<endl<< res <<"\n\n";

system("pause");

} //fin main

20. Compilar y ejecutar el programa anterior. Ingresar 3 números decimales cualquiera, con diferentes

cifras decimales y evalúe como se presenta cada número y el resultado.

Observe que no queda claro que tan grande o pequeño es cada número respecto al resto de números

y el valor de la respuesta.

21. Desplace el cursor hasta el inicio de la línea 10 y reactive la línea de código, borrando solamente la

pareja de plecas (//)

22. Vuelva a compilar y ejecutar el programa. Ingrese los mismos 3 valores de la prueba anterior.

Analice como se presentan los números almacenados en las variables, gracias a la activación de la

bandera ios::fixed

23. Active la línea 11, vuelva a compilar el programa y digite 3 valores numéricos decimales.

Identifique el cambio que genera la función precision() del operador cout.

24. Active las líneas 13 y 14, recompile y pruebe el programa nuevamente. Determine ¿Cuál es la

función de esta pareja de líneas en el código fuente?

25. Active las líneas (16, 18, 20 y 22) del código fuente y compile nuevamente.

Determine la función hecha por la función width y luego de fill del operador cout.

26. Guarde los cambios del archivo.

Parte 5: Resolviendo un problema real

27. Prepare un nuevo archivo de código fuente y guardarlo bajo el nombre Ejercicio4.cpp

28. A continuación, le resolverá el siguiente problema a un estudiante de Bachillerato.

Problema: “Calcule el área total de un cono cualquiera, cuyas medidas de altura y radio son dadas en

centímetros y la respuesta se obtiene en centímetros cuadrados”

29. Para comenzar la solución, en la Imagen 4.1, se ofrece la información correspondiente al cálculo del

area total de un cono.

30. En la ventana de código del nuevo programa, digite el bloque de código indicado en la tabla del

Ejercicio4.cpp, teniendo en cuenta las siguientes aclaraciones:

 A lo largo de todo el código, existen una serie de comentarios de programador. Cada uno indica

las sentencias de código que usted debe implementaren las siguientes líneas.

14

Por ejemplo, observe las líneas (7 y 8). Aquí ya se implementó el código que solicita el

comentario.

De manera similar, redacte el código faltante, comenzando desde el comentario de la línea 4.

 Observe las ecuaciones mostradas en la Imagen 4.1. Identifique el nombre de cada una de las

variables y constantes indicadas en las ecuaciones.

Estos mismos nombres los usará al definir las variables y constantes en su código fuente,

respetando el uso de mayúsculas/minúsculas.

 C++ no admite el operador (^) para el cálculo de potencias, por lo que se incluye a la librería

m a t h . h en el encabezado del código fuente y luego se invoca a la función p o w ()

Figura geométrica Conceptos a tomar en cuenta

En donde:

Altura (h)

radio de la base (r)

generatriz (g)

Las formulas a tomar en cuenta son las siguientes:

𝑔 = √𝑟2 + ℎ2
2

𝐴𝑟𝑒𝑎𝑇𝑜𝑡𝑎𝑙 = 𝐴𝑟𝑒𝑎𝐵𝑎𝑠𝑒 + 𝐴𝑟𝑒𝑎𝐿𝑎𝑡𝑒𝑟𝑎𝑙

𝐴𝑟𝑒𝑎𝐵𝑎𝑠𝑒 = 𝑃𝑖. 𝑟2

𝐴𝑟𝑒𝑎𝐿𝑎𝑡𝑒𝑟𝑎𝑙 = 𝑃𝑖. 𝑟. 𝑔

Imagen 4.1: Cálculo del área de un cono

Programa: Ejercicio4.cpp

1

3

4

5

6

7

8

#include<iostream>

usingnamespace std;

#include<stdlib.h>

//declare una constante llamada Pi (con la sintaxis de C)

main(){

//defina aqui a cada una de las variables de entrada

float r,h;//medida de radio y altura del cono

//declare a continuacion a las variables de salida

15

//ahora declare a cada una de las variables de procesos

cout<<"\nCalculo de area total de un cono\n\n";

/*

Redacte el codigo para solicitar al usuario el valor de cada dato de
entrada

 (indicando que las unidades de medida seran en centimetros)

 */

//Redacte los calculos para determinar el area total del cono

//Borre al contenido de la pantalla

/*

 Muestre el valor de area final, cumpliendo el formato

de presentacion descrito a continuacion

 Medidas de cono:

 Radio: 2.00 cm, Altura: 4.00 cm

 Area total: 40.67 cm. cuadrados

 */

 system("pause>nil");

}//fin main

31. Guarde los cambios, compile el programa y compruebe que se obtienen los resultados esperados por

cada combinación de datos de entrada.

32. Una vez desarrollado los ejemplos anteriores, ahora proceda a crear un código fuente diferente para

soluciona a cada uno de los problemas listados a continuación.

33. Al finalizar la redacción y comprobación de las soluciones, entregue la carpeta de trabajo a su

instructor, de acuerdo a como este lo indique.

16

V. ANÁLISIS DE RESULTADOS

A continuación, se ofrece un listado de problemas, cuya solución se debe implementar bajo archivos de

códigos fuentes de Lenguaje C++.

PROBLEMA 1

Determine las áreas totales de cada uno de los siguientes cuerpos geométricos:

Tetraedro Cilindro Esfera

Se necesita la medida de una de

las aristas (L).

Requiere el valor del diametro

(D) de la base y la altura (h)

Diametro (D)

Para cada cuerpo geométrico, debe solicitar solamente a las medidas descritas en la tabla anterior.

PROBLEMA 2

La velocidad de impacto (en metros/seg) de una pelota de hule soltada verticalmente desde una altura

determinada (en metros), está dada por la fórmula:

Esta pelota rebota a 2/3 de la altura anterior desde la cual se suelta.

Si este experimento se realizara en nuestra Luna Terrestre, elabore una aplicación en C que determine la

siguiente información:

 Calcule la velocidad de impacto de los primeros 2 rebotes

 La altura que alcanza en el 2do rebote.

Recuerde que las medidas de gravedad de planetas o lunas se consideran valores fijos/constantes.

17

PROBLEMA 3

Ayude a un estudiante de electrónica a obtener el capacitor

equivalente que reemplazaría al conjunto de capacitores

mostrados en el siguiente diagrama:

Los diferentes capacitores se miden en microfaradios.

El capacitor C43 del circuito tiene un valor fijo de 50

microfaradios.

PROBLEMA 4

Una empresa distribuidora de combustibles almacena el combustible Diesel y de Gasolina de una sus

estaciones de venta en 2 tanques subterráneos idénticos (ver diagrama); un tanque diferente por cada tipo

de combustible.

Determine:

 El volumen máximo (en litros) de Diesel

que puede ser almacenado en el 1er

tanque.

 Luego, obtenga la cantidad límite de

Gasolina (en Kilogramos) que puede ser

almacenada en el 2do tanque.

Cada tanque es cilíndrico y sus medidas están

dadas en metros.

PROBLEMA 5

Realice una aplicación que genere la factura por la venta de 3 productos diferentes.

De cada producto, se conoce su nombre, el precio por unidad y la cantidad de unidades vendidas. A la

venta final se debe aplicar un impuesto al valor agregado (IVA) del 13%

Muestre el detalle de venta e indique el monto total a pagar por concepto de IVA, cumpliendo el siguiente

ejemplo de presentación de factura:

18

PROBLEMA 6

Ayude a un estudiante de electrónica a obtener el resistor

equivalente que reemplazaría al conjunto de resistencias

mostrados en el siguiente diagrama:

Las diferentes resistencias se miden en kilo-ohmios y R3

tiene un valor fijo de 60 kilo-ohmios.

PROBLEMA 7

La corriente eléctrica I (en amperios), que fluye a través del

circuito mostrado aquí, esta dado por la siguiente ecuación:

En donde V es el voltaje de la batería (en voltios), R es la resistencia (en ohmios), C es el valor del

capacitor (en faradios), t es el tiempo (en segundos) luego de cerrar el interruptor y e es la constante de

Euler (2.718281...).

Escriba un código fuente que solicite a usuario los valores necesarios para calcular y mostrar en pantalla

a la corriente (I) que circula por la resistencia. La medida de la corriente debe ser presentada en

miliamperios. Por ejemplo:

Cuando el voltaje de la batería es de 20v, la resistencia de 8100 ohmios, el capacitor de 0.000018 faradios

y transcurren 0.31 segundos luego de cerrar el interruptor, por la resistencia circulan 2.46914

miliamperios.

PROBLEMA 8

Determinar los “porcentajes de votos” alcanzados en una elección del municipio de Aleluya, en la que

participaron 3 candidatos. De cada candidato participante en la elección se conoce su nombre completo

y el total de votos obtenidos en la elección.

Los resultados solicitados se deben presentar bajo el siguiente formato de ejemplo:

Los porcentajes solicitados se deberán presentar con una exactitud de 1 cifra decimal.

Para manejar texto, investigue cómo funciona el método getline del operador cin: c i n . g e t l i n e ()

y luego el uso de la función f f l u s h ()

19

PROBLEMA 9

La siguiente formula, creada por el científico indio Ramanujan, permite determinar un valor muy

aproximado del perímetro de una elipse:

En donde a y b son el radio mayor y menor, respectivamente.

Ambos radios son medidos en centimetros.

Determine la longitud del perímetro de una elipse y muestre

su medida en centimetros y tambien en pulgadas.

20

Guía de Laboratorio No. 4:

RÚBRICA DE EVALUACIÓN

Actividad a evaluar: ANÁLISIS DE RESULTADOS

Formar grupos entre 3 a 5 estudiantes, llenar esta hoja de evaluación y entregarla a su docente.

Su instructor seleccionará 3 problemas del análisis de resultados, para ser resueltos apropiadamente

por el grupo

Lista de Integrantes:

CARNET 1 CARNET 2 CARNET 3 CARNET 4 CARNET 5

Problemas a resolver:

Criterio a evaluar

¿Prob

1?

¿Prob

2?

¿Prob

3?

¿Prob

4? PROM. Puntaje

(20%)

Define las variables de entrada y salida esperadas

Define y usa al menos un valor constante.

(20%)

Define las expresiones correctas para operar a los

datos de entrada.

(20%)

Se cumplen cada una de las restricciones descritas

en el problema

(15%)

Diálogo de la aplicación con usuario es apropiado.

Se documento internamente al código fuente.

(25%)

Se obtiene a c/u de los resultados solicitados

 Nota:

